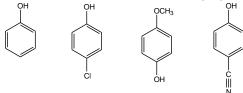
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO


PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA - NÍVEL: MESTRADO

ATENÇÃO: NÃO ASSINE OU IDENTIFIQUE ESTA PROVA OU AS FOLHAS QUE LHE FOREM ENTREGUES, USE APENAS SEU CPF.

- 1. No preparo de uma solução tampão, quantas gramas de cloreto de amônio e qual o volume de hidróxido de sódio 3,0 mol L⁻¹ deveriam ser adicionados em 200 mL de água e diluído para 500 mL para obter uma solução tampão pH = 9,5 com a concentração do sal de 0,10 mol L⁻¹. Dados: MM (NH₄Cl) = 53,5 g mol⁻¹; pKb = 4,76.
- 2. Em uma solução contento 25 mL de AgNO₃ 0,1 mol L⁻¹ foram adicionados 35 mL de 0,05 mol L⁻¹ de K₂CrO₄. Calcule a concentração de cada espécie iônica no equilíbrio. A precipitação dos íons prata na forma de cromato de prata é quantitativa? Dados: Kps = 1,1 x 10⁻¹².
- 3. Os íons prata forma complexo estável, na razão 1:1, com trietilenotetramina, também conhecido como "Trien" cuja formula molecular é [NH₂(CH₂)₂NH(CH₂)₂ NH(CH₂)₂NH₂]. Calcule a concentração de íons prata no equilíbrio quando 25 mL de 0,01 mol L⁻¹ de nitrato de prata é adicionado em 50 mL de 0,015 mol L⁻¹ de Trien. DADOS: K_f= 5,0x10⁷.
- 4. A análise química do sangue de um suicida mostrou a presença de um composto que normalmente não está presente no sangue. Este composto continha carbono e hidrogênio, mas não halogênio, nitrogênio ou enxofre. Não foi feito teste para oxigênio. A combustão de 33,0 mg deu 63 mg de dióxido de carbono 3 39.1 mg de água.
 - (a) Qual a fórmula empírica do composto?
 - (b) A determinação do peso molecular mostrou que a fórmula molecular era idêntica à fórmula empírica. Escreva todos os possíveis isômeros da substância e dê-lhes o nome
 - (c) O composto reage vigorosamente com sódio. Qual a estrutura do composto encontrado no sangue do suicida e o que provavelmente ele andou fazendo antes de morrer?
- 5. A lei de velocidade para a reação $2NO_{(g)+}O_{2(g)} \rightarrow 2NO_{2(g)}$ é: $v = k [NO]^2 [O_2]$. Se triplicarmos as concentrações de NO e O_2 ao mesmo tempo, quantas vezes mais rápida será a reação?
- 6. Uma dada amostra sólida consiste unicamente em KI e Nal. Quando 3,309 g deste material são oxidados por KIO₃ em solução ácida, obteve-se 3,198 g de I₂. Calcule a porcentagem em peso da amostra original.
- 7. O limoneno é encontrado na casca da laranja, terebintina e nas agulhas de pinho, tendo a estrutura.

- (a) Quantas formas isoméricas do limoneno existem?
- (b) A hidrogenação total do limoneno produz $C_{10}H_{20}$. Escreva a fórmula estrutural deste produto e identifique cada carbono assimétrico.
- (c) quantos estereoisômeros do composto tetra-hidro-limoneno existem? Quantos são oticamente ativos?
- 8. Coloque as seguintes substâncias em ordem crescente de acidez e explique sua resposta.

- 9. Desenhe uma estrutura de Lewis para acetonitrila (C₂H₃N) e responda as seguintes questões:
 - (a) Quantos elétrons o átomo de carbono tem na sua camada mais externa? Quantos são ligantes e quantos são não ligantes?
 - (b) Qual é a hibridização de cada átomo de carbono na acetonitrila?
 - (c) Qual a geometria da ligação CN na acetonitrila?
- 10. Na ausência de outras moleculares reativas, o ceteno reage formando um dímero. Duas estruturas razoáveis para o dímero são:

Sugira um método de análise para distingui-las.